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1. Introduction

The dynamic analysis of a cracked rotor has been investigated since the 1970s, and now there
are extensive researches on the vibrational behaviors of the cracked rotor and the use of response
characteristics to detect crack [1–11]. With the energy principle of Paris in fracture mechanics,
Dimarogonas and his colleagues derived a rough analytical estimation of the local flexibility,
which is a function of the relative crack depth [3,7–9]. From the viewpoint of the theorem, the
researches of Dimarogonas are of state-of-art; however, the local flexibility due to the crack in the
cracked rotor system is calculated approximately. In the present study, the local flexibility of
Dimarogonas is modified slightly, which is more suitable to the theoretical model.

2. Theoretical calculation of local flexibility

A transverse crack of depth a is considered on a shaft of radius R in rotor system, which is
shown in Fig. 1. Here only the bending deformation is taken into consideration; axial forces and
shear stresses are neglected. By the energy principle of Paris, the strain energy of a rectangular
strip with a crack of constant depth z is

dU ¼ dZ
Z z

0

JðzÞ dz; ð1Þ

where dZ is the width of the rectangular strip, JðzÞ is the strain energy density function:

JðzÞ ¼
1� v2

E
K2

I ðzÞ; ð2Þ
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where v is the Poisson ratio, E is Young’s modulus and KI is the stress intensity factor
corresponding to bending moment M:
The solution of KI is

KI ¼
4M

pR4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Z2

p ffiffiffiffiffi
pz

p
F2

z

h

� �
; ð3Þ

where h is the local height of the strip (h ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Z2

p
),
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:

For the crack of maximum depth a and width 2b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
; the strain energy is

obtained as follows:
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The local flexibility due to the crack in the x-axis direction can be written as
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@2U
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In dimensionless form
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The expression on the right is a function of a=R: The numerical integration Simpson Method is
adopted; the dimensionless local flexibility varying with the relative crack depth is shown in Fig. 2.
The dimensionless local flexibility of Dimarogonas in Refs. [7–9] is written as
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Fig. 1. Geometry of the cracked section of a shaft.
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The dimensionless local flexibility of Dimarogonas is shown in Fig. 3(a). The results shown in
Fig. 2 are smaller than those shown in Fig. 3(a) for the difference in the integration boundary of
the crack depth. The integration boundary of Eq. (6) is a constant crack depth a=R; but the
integration boundary of Eq. (5) is a varying crack depth ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � Z2

p
� ðR � aÞ�=R; which is smaller

than a=R:
In comparison to Eq. (6), Eq. (5) is more suitable to the theoretical model shown in Fig. 1. The

theoretical results correspond with the experimental results given by Grabowski (shown in Fig. 4)
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Fig. 2. Dimensionless local flexibility.

Fig. 3. Dimensionless flexibility of the cracked section: (a) load direction normal to crack edge; (b) load direction

parallel to crack edge; � experimental results (from Ref. [7]).
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more effectively than those of Dimarogonas. For example, when the crack edge orientation is
p rad and the relative crack depth is a=R ¼ 1; the dimensionless local flexibility of Dimarogonas is
larger than 10, the dimensionless local flexibility in the present paper is 4.996, and the
experimental result is about 6.3 [7–10]. The results are reasonable, which can be verified by the
following equation:

kx ¼
k

1þ cxkl2=8
; ð7Þ

where k is the stiffness of the uncracked shaft and l is the shaft length.
Substituting cx into Eq. (7), the conclusion is that the stiffness in the experiment of Grabowski

will be smaller than the theoretical value in the paper, because the experimental results are
obtained with a notched shaft rather than a cracked shaft.
The same modification can be made to the local flexibility in the Z-axis direction of

Dimarogonas in Refs. [7–9].
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Fig. 4. Static deflection of a cracked shaft for changing edge orientation a=R ¼ 1:
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